Signposts from research to resources

Woman working at computerFrom repositories to blogs, the web has expanded means to share information and resources widely. Access to data and code enables other researchers to check published analyses and undertake new ones. Having another way to look at results can help people connect with them and deepen understanding. PubMed Commons members are tying these pieces back to publications by adding external links to PubMed records.

Tagging inputs 

High-throughput assays generate heaps of data, which can require custom software tools to process and analyze. Some authors are annotating current locations and updates for data and code via PubMed Commons.

Proteomics studies approach a wide range of questions about proteins and pathways, often with mass spectrometry data at the core. Author David Simpson provides the identifier and URL to access the dataset for a recent publication. Attila Csordas has also connected several proteomics articles to deposited data.

Patrick Schloss and colleagues published an approach for characterizing microbiomes using a particular high-throughput sequencing platform. He links to “a fully executable version” of his paper. The repository includes the R code, as well as raw and processed data, so that users can reproduce results in the publication.

With the end of Google Code on the horizon, researchers are moving projects to new locations. Pedro Mendes has migrated code for a tool used in modeling of biochemical networks to GitHub. He’s added a comment to point to the code’s new home.

Sometimes authors will update code and append new options. Ross Lazarus summarizes features added to a toolkit for high-throughput biology workflow software. He also includes a link to the new version.

Adding dimensions

Three-dimensional structures of biological molecules can offer useful insight into how proteins function. But as figures in papers, structures can fall flat. Some are using PubMed Commons to restore depth.

Michael Cianfrocco and colleagues solved the structure of a transcription factor complex bound to DNA. He provides a link to FigShare where users can download files for a visualization program. They can then dive into the structure and even create their own figures.

Sandra Porter links to a blog post, where she writes, “One of the most amazing things, to me at least, is how spider silk changes from a liquid form, inside the spider, to a solid, strong material that we see in their webs and other constructions.” She shows readers how to use their tablets to explore the structure and properties of a protein in spider silk that permit this change.

Mary Mangan offers a resource for a literal hands-on approach. She used data from an X-ray crystal structure to create a 3D-printable model of γ-hemolysin, a pore forming protein from Staphylococcus aureus. She points readers to the model on the NIH 3D Print Exchange.

Have something you want to add to a publication? Any author of a PubMed-indexed publication is eligible to join PubMed Commons. Learn how! And check out more examples of how PubMed Commons is being put to use.

The PubMed Commons Team

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s